About 2,390,000 results
Open links in new tab
  1. What is the integral of 0? - Mathematics Stack Exchange

    Feb 4, 2018 · The integral of 0 is C, because the derivative of C is zero. Also, it makes sense logically if you recall the fact that the derivative of the function is the function's slope, because any function f …

  2. What is an integral? - Mathematics Stack Exchange

    Dec 15, 2017 · A different type of integral, if you want to call it an integral, is a "path integral". These are actually defined by a "normal" integral (such as a Riemann integral), but path integrals do not seek to …

  3. What is the integral of 1/x? - Mathematics Stack Exchange

    Answers to the question of the integral of $\frac {1} {x}$ are all based on an implicit assumption that the upper and lower limits of the integral are both positive real numbers.

  4. calculus - Is there really no way to integrate $e^ {-x^2 ...

    @user599310, I am going to attempt some pseudo math to show it: $$ I^2 = \int e^-x^2 dx \times \int e^-x^2 dx = Area \times Area = Area^2$$ We can replace one x, with a dummy variable, move the …

  5. What is the difference between an indefinite integral and an ...

    Nov 29, 2013 · Wolfram Mathworld says that an indefinite integral is "also called an antiderivative". This MIT page says, "The more common name for the antiderivative is the indefinite integral." One is free …

  6. What does it mean for an "integral" to be convergent?

    Feb 17, 2025 · The noun phrase "improper integral" written as $$ \int_a^\infty f (x) \, dx $$ is well defined. If the appropriate limit exists, we attach the property "convergent" to that expression and use …

  7. solving the integral of $e^ {x^2}$ - Mathematics Stack Exchange

    The integral which you describe has no closed form which is to say that it cannot be expressed in elementary functions. For example, you can express $\int x^2 \mathrm {d}x$ in elementary functions …

  8. How to calculate the integral in normal distribution?

    If by integral you mean the cumulative distribution function $\Phi (x)$ mentioned in the comments by the OP, then your assertion is incorrect.

  9. When does a line integral equal an ordinary integral?

    One possible interpretation: a "normal" integral is simply a line integral where the path is straight and oriented along a particular axis. Thus, as soon as you perform a transformation to the integrand to …

  10. What is the integral of $e^{-x^2/2}$ over $\\mathbb{R}$

    What is the integral of $$\int_ {-\infty}^ {\infty}e^ {-x^2/2}dx\,?$$ My working is here: = $-e^ (-1/2x^2)/x$ from negative infinity to infinity. What is the value of this?